Respuesta :
Answer:
(x, y) = (23, 4)
Step-by-step explanation:
2x - 5y = 26
x - 5y = 3 $\Rightarrow$ x = 3+5y
substituting the value of x ( second equation) into the first equation, we get, 2(3+5y) - 5y = 26. Simplifing, we get,
6+10y - 5y =26
5y = 20
y = 4
So, x = 3+5*4 = 3+20 = 23
Answer:
[tex]\left \{ {{x=23} \atop {y=4}} \right.[/tex]
Step-by-step explanation:
[tex]\left \{ {{2x - 5y =26} \atop {x-5y=3}} \right.[/tex]
you can add 5y to both sides of the second equation:
[tex]x = 5y + 3[/tex]
Then, substitute:
[tex]2(5y + 3) - 5y = 26[/tex]
use the distributive property on the left side:
[tex]10y + 6 - 5y = 26[/tex]
[tex]5y + 6 = 26[/tex]
subtract 6 from both sides
[tex]5y = 20[/tex]
divide both sides by 5
[tex]y = 4[/tex]
Substitute into original equation
[tex]x - 5y = 3 --> x - 5(4) = 3\\x - 20 = 3\\x = 23[/tex]