Respuesta :

Answer:

(x, y) = (23, 4)

Step-by-step explanation:

2x - 5y = 26

x - 5y = 3 $\Rightarrow$ x = 3+5y

substituting the value of x ( second equation) into the first equation, we get, 2(3+5y) - 5y = 26. Simplifing, we get,

6+10y - 5y =26

5y = 20

y = 4

So, x = 3+5*4 = 3+20 = 23

Answer:

[tex]\left \{ {{x=23} \atop {y=4}} \right.[/tex]

Step-by-step explanation:

[tex]\left \{ {{2x - 5y =26} \atop {x-5y=3}} \right.[/tex]

you can add 5y to both sides of the second equation:

[tex]x = 5y + 3[/tex]

Then, substitute:

[tex]2(5y + 3) - 5y = 26[/tex]

use the distributive property on the left side:

[tex]10y + 6 - 5y = 26[/tex]

[tex]5y + 6 = 26[/tex]

subtract 6 from both sides

[tex]5y = 20[/tex]

divide both sides by 5

[tex]y = 4[/tex]

Substitute into original equation

[tex]x - 5y = 3 --> x - 5(4) = 3\\x - 20 = 3\\x = 23[/tex]