Answer:
9) [tex]y=-\frac{1}{8} x+\frac{13}{8}[/tex]
10) [tex]y = -1[/tex]
11) [tex]y=-\frac{5}{2}x[/tex]
12) [tex]y= -\frac{4}{3}x+1[/tex]
Step-by-step explanation:
Parallel lines have same slope and slopes of perpendicular lines are negative reciprocals of each other.
9) through (-3, 2), parallel to [tex]y=-\frac{1}{8} x +4[/tex]
[tex]y-y_1=m(x-x_1)[/tex]
[tex]y-2=-\frac{1}{8} (x+3)[/tex]
[tex]y=-\frac{1}{8} x-\frac{3}{8} +2[/tex]
10) through (-5, -1), parallel to [tex]y=0[/tex]
[tex]y+1=0 (x+5)[/tex]
[tex]y = -1[/tex]
11) through (2, -5), perpendicular to [tex]y= \frac{2}{5} x +5[/tex]
[tex]y+5=-\frac{5}{2} (x-2)[/tex]
[tex]y=-\frac{5}{2}x+5-5\\y=-\frac{5}{2}x[/tex]
12) through (-3, 5), perpendicular to [tex]y= \frac{3}{4} x[/tex]
[tex]y-5=-\frac{4}{3} (x+3)[/tex]
[tex]y= -\frac{4}{3}x-4 +5[/tex]
[tex]y= -\frac{4}{3}x+1[/tex]