Respuesta :

Answer:

9) [tex]y=-\frac{1}{8} x+\frac{13}{8}[/tex]

10) [tex]y = -1[/tex]

11)  [tex]y=-\frac{5}{2}x[/tex]

12) [tex]y= -\frac{4}{3}x+1[/tex]

Step-by-step explanation:

Parallel lines have same slope and slopes of perpendicular lines are negative reciprocals of each other.

9) through (-3, 2), parallel to   [tex]y=-\frac{1}{8} x +4[/tex]

[tex]y-y_1=m(x-x_1)[/tex]

[tex]y-2=-\frac{1}{8} (x+3)[/tex]

[tex]y=-\frac{1}{8} x-\frac{3}{8} +2[/tex]

10) through (-5, -1), parallel to   [tex]y=0[/tex]

[tex]y+1=0 (x+5)[/tex]

[tex]y = -1[/tex]

11) through (2, -5), perpendicular to   [tex]y= \frac{2}{5} x +5[/tex]

[tex]y+5=-\frac{5}{2} (x-2)[/tex]

[tex]y=-\frac{5}{2}x+5-5\\y=-\frac{5}{2}x[/tex]

12) through (-3, 5), perpendicular to   [tex]y= \frac{3}{4} x[/tex]

[tex]y-5=-\frac{4}{3} (x+3)[/tex]

[tex]y= -\frac{4}{3}x-4 +5[/tex]

[tex]y= -\frac{4}{3}x+1[/tex]