Answer:
[tex]\frac{x^3 +7x^2-2x-6}{x+ 7} \ = \ x^2 -2 \ +\ \frac{8}{x^3 +7x^2-2x-6}[/tex]
Step-by-step explanation:
Given polynomial function;
x³ + 7x² - 2x - 6
divisor of the polynomial = x + 7
The function is divided as follows;
x² - 2
---------------------------
x + 7 √ x³ + 7x² - 2x - 6
- (x³ + 7x²) ↓
-----------------------------
-2x - 6
- (-2x - 14)
-----------------------------------
8
Since there is a remainder of 8, then the result is expressed as follows; [tex]q(x) + \frac{r(x)}{b(x)} = x^2 -2 \ +\ \frac{8}{x^3 +7x^2-2x-6}[/tex]