Respuesta :

Answer:

a) [tex]t_{1} = 12[/tex]

b) The explicit formula

[tex]t_{n} = ar^{n-1} = 12(2.5)^{n-1}[/tex]

c) t₁₈  = 69,849,193.096

Step-by-step explanation:

Step(i):-

Given that the geometric sequence

          r = 2.5

Given the fourth term of the  geometric sequence

      [tex]t_{4} = ar^{3} = 187.5[/tex]

⇒ ar³ = 187.5

⇒ a (2.5)³ = 187.5

    [tex]a = \frac{187.5}{(2.5)^{3} } = 12[/tex]

The explicit formula

[tex]t_{n} = ar^{n-1} = 12(2.5)^{n-1}[/tex]

Step(ii):-

put n=1

[tex]t_{1} = ar^{1-1} = 12(2.5)^{1-1} = 12 (2.5)^{0} = 12[/tex]

The [tex]18^{th}[/tex] of the geometric sequence

[tex]t_{18} = ar^{18-1} = a r^{17}[/tex]

[tex]t_{18} = 12( 2.5)^{17}[/tex]

t₁₈  = 69,849,193.096

Final answer:-

a) [tex]t_{1} = 12[/tex]

b) The explicit formula

[tex]t_{n} = ar^{n-1} = 12(2.5)^{n-1}[/tex]

c) t₁₈  = 69,849,193.096