Respuesta :
You can simply expand each product and see whether it gives you a difference of squares.
• [tex]\mathsf{(-7x+4)\cdot (-7x+4)}[/tex]
That's actually [tex]\mathsf{(-7x+4)^2:}[/tex]
[tex]\mathsf{(-7x+4)^2}\\\\ \mathsf{=(-7x+4)\cdot (-7x+4)}\\\\ \mathsf{=(-7x+4)\cdot (-7x)+(-7x+4)\cdot 4}\\\\ \mathsf{=49x^2-28x-28x+16}[/tex]
[tex]\mathsf{=49x^2-56x+16}[/tex] ✖
which is not a difference of squares.
—————
• [tex]\mathsf{(-7x+4)\cdot (4-7x)}[/tex]
[tex]\mathsf{=(-7x+4)\cdot 4-(-7x+4)\cdot 7x}\\\\ \mathsf{=-28x+16-(-49x^2+28x)}\\\\ \mathsf{=-28x+16+49x^2-28x}[/tex]
[tex]\mathsf{=49x^2-56x+16}[/tex] ✖
which is not a difference of squares.
—————
• [tex]\mathsf{(-7x+4)\cdot (-7x-4)}[/tex]
[tex]\mathsf{=(-7x+4)\cdot (-7x)-(-7x+4)\cdot 4}\\\\ \mathsf{=49x^2-28x-(-28x+16)}\\\\ \mathsf{=49x^2-\diagup\!\!\!\!\! 28x+\diagup\!\!\!\!\! 28x-16}\\\\ \mathsf{=49x^2-16}[/tex]
[tex]\mathsf{=(7x)^2-4^2}[/tex] ✔
That is a difference of two squares.
—————
• [tex]\mathsf{(-7x+4)\cdot (7x-4)}[/tex]
[tex]\mathsf{=(-7x+4)\cdot 7x-(-7x+4)\cdot 4)}\\\\ \mathsf{=-49x^2+28x-(-28x+16)}\\\\ \mathsf{=-49x^2+28x+28x-16}[/tex]
[tex]\mathsf{=-49x^2+56x-16}[/tex] ✖
which is not a difference of squares.
—————
Only the third option will result in a difference of squares.
Answer: (− 7x + 4) · (− 7x − 4).
I hope this helps. =)
Answer:
The expression which will result in difference of two squares is:
(–7x + 4)·(–7x – 4)
Step-by-step explanation:
We know that the formula of the type:
[tex](a-b).(a+b)=a^2-b^2[/tex]
i.e. it is a difference of two square quantities. (a^2 and b^2)
Hence the option which satisfies the following expression is:
(-7x + 4)·(-7x-4)
since,
here [tex]a=-7x[/tex] and [tex]b=4[/tex] and
[tex](-7x+4).(-7x-4)=(-7x)^2-(4)^2=(7x)^2-4^2[/tex]
so the expression is a difference of two square quantities:
[tex](7x)^2[/tex] and [tex]4^2[/tex]
Hence, the correct answer is:
(-7x + 4)·(-7x-4)