Answer:
[tex] \huge \boxed{ \boxed{ \tt 2xy(x + y)}}[/tex]
Step-by-step explanation:
to understand this
you need to know about:
tips and formulas:
- (a+b)³=a³+3a²b+3ab²+b³
- a³+b³=(a+b)(a²-ab+b²)
let's solve:
- [tex] \sf \: use \: 2nd \: formula \: to \: simplify : \\ \sf(x + y {)}^{3} - (x + y)( {x}^{2} - xy + {y}^{2} )[/tex]
- [tex] \sf factor \: out \: (x + y) : \\ (x + y )\{(x + y)^{2} - ( {x}^{2} - xy + {y}^{2} \}[/tex]
- [tex] \sf simplify : \\ (x + y {)} \{ {x}^{2} + 2xy + {y}^{2} - {x}^{2} + xy - {y}^{2} \}[/tex]
- [tex] \sf collect \: and \: combine \: like \: terms : \\ (x + y) \{2xy \}[/tex]
- [tex] \sf \: rewrite : \\ 2xy(x + y)[/tex]
and
we are done