Answer:
[tex]0.35598[/tex]
Explanation:
r = Radius = [tex]\dfrac{0.9}{2}=0.45\ \text{cm}[/tex]
R = Resistance = [tex]198\ \Omega[/tex]
A = Area = [tex]\pi r^2[/tex]
l = Length of blood in cylinder = 1 cm
h = Hematocrit of the blood
Resistivity is given by
[tex]\rho=\dfrac{1.32}{1-h}-0.79[/tex]
Resistance is given by
[tex]R=(\dfrac{1.32}{1-h}-0.79)\dfrac{l}{\pi r^2}\\\Rightarrow h=1-\dfrac{1.32}{\dfrac{R\pi r^2}{l}+0.79}\\\Rightarrow h=1-\dfrac{1.32}{\dfrac{198\times \pi\times (0.45\times 10^{-2})^2}{0.01}+0.79}\\\Rightarrow h=0.35598[/tex]
The hematocrit of the blood is [tex]0.35598[/tex].