Respuesta :

Answer:

[tex]a_{n}=45-3n[/tex]

Step-by-step explanation:

Method 1:

Arithmetic sequence is in the form

[tex]a_{n} =a_{1} +(n-1)d\\[/tex]

d is the common difference, can be found by:

[tex]d=a_{n}-a_{n-1}=-3[/tex]

Subtituting the [tex]a_{1}[/tex] and [tex]d[/tex]

You get:

[tex]a_{n}=42+(-3)(n-1)=45-3n[/tex]

Method 2 (Mathematical induction):

Assume it is in form [tex]a_{n}=45-3n[/tex]

Base step: [tex]a_{1} =45-3(1)=42[/tex]

Inducive hypophesis: [tex]a_{n}=45-3n[/tex]

GIven: [tex]a_{n+1} =a_{n}-3[/tex]

[tex]a_{n+1}=45-3n-3=45-3(n+1)[/tex]

Proved by mathematical induction

[tex]a_{n}=45-3n[/tex]