Respuesta :

Given:

The given equation is

[tex]2x^3-3x^2+18x-27=0[/tex]

To find:

All the real solutions.

Solution:

We have,

[tex]2x^3-3x^2+18x-27=0[/tex]

It can be written as

[tex]x^2(2x-3)+9(2x-3)=0[/tex]

[tex](2x-3)(x^2+9)=0[/tex]

Using zero product property, we get

[tex](2x-3)=0[/tex] and [tex](x^2+9)=0[/tex]

[tex]2x=3[/tex] and [tex]x^2=-9[/tex]

[tex]x=\dfrac{3}{2}[/tex] and [tex]x=\pm\sqrt{-9}[/tex]

We know that [tex]x=\pm\sqrt{-9}[/tex] is an imaginary number because there is a negative sign under the square root.

Therefore, [tex]x=\dfrac{3}{2}[/tex] is the only real solution of the given equation.