Please solve the following problem.

Express the complex number [tex]z = 8 \text{cis} \frac{2\pi}{3}[/tex] in rectangular form [tex]a+bi[/tex].

Respuesta :

Answer:

- 4 + 4√3 i, where a = -4 & b = 4√3

Step-by-step explanation:

z = 8 cis(2π/3)

z = 8 [cos(2π/3) + i sin(2π/3) ]

z = 8 [cos(π - π/3) + i sin(π - π/3)]

z = 8 [ - cosπ/3 + i sin(π/3)]

z = 8[ - 1/2 + i √3/2 ]

z = - 4 + 4√3 i [in a + bi form]

Note that: cis x = cosx + i sinx

Nayefx

Answer:

[tex]a + bi = - 4 + 4 \sqrt{3} i[/tex]

Step-by-step explanation:

we are given [tex]\displaystyle cis(\dfrac{2\pi}{3})[/tex]

recall complex number trigonometric form:

[tex] \displaystyle \: r( \cos( \theta) + i \sin( \theta) )[/tex]

we are already given that [tex]\theta=\dfrac{2\pi}{3}[/tex]

recall complex number rectangular form

[tex] \displaystyle \: a + bi[/tex]

where [tex]\displaystyle a=r\cos(\theta)\: and\: b=r\sin(\theta)[/tex]

let's work with a:

substitute the value of [tex]\theta[/tex] and r

[tex] \displaystyle \: a = 8 \times \cos( \frac{2\pi}{ 3} ) [/tex]

recall unit circle

so [tex]\cos(\dfrac{2\pi}{3})[/tex] should be in Q:II

[tex] \displaystyle \: a = 8 \times - \frac{1}{2} [/tex]

simplify multiplication:

[tex] \displaystyle \: a = - 4[/tex]

let's work with b:

substitute the value of [tex]\theta[/tex] and r:

[tex] \displaystyle \: b = 8\sin( \frac{3\pi}{2} ) [/tex]

recall unit circle so [tex]\sin(\dfrac{3\pi}{2})[/tex] should be in Q:II

[tex] \displaystyle \: b = 8 \times \frac{ \sqrt{3} }{2} [/tex]

simplify:

[tex] \displaystyle \: b = 4 \sqrt{3} [/tex]

so

[tex] \displaystyle \: b i= 4 \sqrt{3} i[/tex]

hence,

[tex]a + bi = - 4 + 4 \sqrt{3} i[/tex]