Answer:
The frequency of the oscillation is 2.45 Hz.
Explanation:
Given;
mass of the spring, m = 0.5 kg
total mechanical energy of the spring, E = 12 J
Determine the spring constant, k as follows;
E = ¹/₂kA²
kA² = 2E
k = (2E) / (A²)
k = (2 x 12) / (0.45²)
k = 118.519 N/m
Determine the angular frequency, ω;
[tex]\omega = \sqrt{\frac{k}{m} } \\\\\omega = \sqrt{\frac{118.519}{0.5} } \\\\\omega = 15.396 \ rad/s[/tex]
Determine the frequency of the oscillation;
ω = 2πf
f = (ω) / (2π)
f = (15.396) / (2π)
f = 2.45 Hz
Therefore, the frequency of the oscillation is 2.45 Hz.