Respuesta :
Answer:
r =[tex]\frac{ 1 \pm \sqrt{ \frac{m}{M} } }{1 - \frac{m}{M} }[/tex]
Explanation:
Let's apply the universal gravitation law to the body (c), we use the indications 1 for the planet and 2 for the moon
∑ F = 0
-F_{1c} + F_{2c} = 0
F_{1c} = F_{2c}
let's write the force equations
[tex]G \frac{m_c M}{r^2} = G \frac{m_c m}{(d-r)^2}[/tex]
where d is the distance between the planet and the moon.
[tex]\frac{M}{r^2} = \frac{m}{(d-r)^2}[/tex]
(d-r)² = [tex]\frac{m}{M} \ \ r^2[/tex]
d² - 2rd + r² = \frac{m}{M} \ \ r^2
d² - 2rd + r² (1 - [tex]\frac{m}{M}[/tex]) = 0
(1 - [tex]\frac{m}{M}[/tex]) r² - 2d r + d² = 0
we solve the second degree equation
r = [2d ± [tex]\sqrt{ 4d^2 - 4 ( 1 - \frac{m}{M} ) }[/tex] ] / 2 (1- [tex]\frac{m}{M}[/tex])
r = [2d ± 2d [tex]\sqrt{ \frac{m}{M} }[/tex]] / 2d (1- [tex]\frac{m}{M}[/tex])
r =[tex]\frac{ 1 \pm \sqrt{ \frac{m}{M} } }{1 - \frac{m}{M} }[/tex]
there are two points for which the gravitational force is zero
The distance between object from planet will be "[tex]\frac{R}{[1+\sqrt{\frac{m}{M} } ]}[/tex]".
According to the question,
Let,
- Object is "x" m from planet center = R - x
- Gravitational force = 0
- Mass of object = m₁
As we know,
→ [tex]Prerequisites-Gravitational \ force = \frac{GMm}{r^2}[/tex]
Now,
→ [tex]\frac{GMm_1}{x^2} = \frac{Gmm_1}{(R-x)^2}[/tex]
→ [tex]\frac{(R-x)^2}{x^2} = \frac{m}{M}[/tex]
→ [tex]\frac{R-x}{x} =\sqrt{\frac{m}{M} }[/tex]
→ [tex]x = \frac{R}{[1+ \sqrt{\frac{m}{M} } ]}[/tex]
Thus the answer above is appropriate.
Learn more:
https://brainly.com/question/11968775