Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the x-axis. Verify your results using the integration capabilities of a graphing utility.y = cos 2xy = 0x = 0x = pi/4

Respuesta :

Answer:

[tex]V = \frac{\pi^2}{8}[/tex]

[tex]V = 1.23245[/tex]

Step-by-step explanation:

Given

[tex]y = \cos 2x[/tex]

[tex]y = 0; x = 0; x = \frac{\pi}{4}[/tex]

Required

Determine the volume of the solid generated

Using the disk method approach, we have:

[tex]V = \pi \int\limits^a_b {R(x)^2} \, dx[/tex]

Where

[tex]y = R(x) = \cos 2x[/tex]

[tex]a = \frac{\pi}{4}; b =0[/tex]

So:

[tex]V = \pi \int\limits^a_b {R(x)^2} \, dx[/tex]

Where

[tex]y = R(x) = \cos 2x[/tex]

[tex]a = \frac{\pi}{4}; b =0[/tex]

So:

[tex]V = \pi \int\limits^a_b {R(x)^2} \, dx[/tex]

[tex]V = \pi \int\limits^{\frac{\pi}{4}}_0 {(\cos 2x)^2} \, dx[/tex]

[tex]V = \pi \int\limits^{\frac{\pi}{4}}_0 {\cos^2 (2x)} \, dx[/tex]

Apply the following half angle trigonometry identity;

[tex]\cos^2(x) = \frac{1}{2}[1 + \cos(2x)][/tex]

So, we have:

[tex]\cos^2(2x) = \frac{1}{2}[1 + \cos(2*2x)][/tex]

[tex]\cos^2(2x) = \frac{1}{2}[1 + \cos(4x)][/tex]

Open bracket

[tex]\cos^2(2x) = \frac{1}{2} + \frac{1}{2}\cos(4x)[/tex]

So, we have:

[tex]V = \pi \int\limits^{\frac{\pi}{4}}_0 {\cos^2 (2x)} \, dx[/tex]

[tex]V = \pi \int\limits^{\frac{\pi}{4}}_0 {[\frac{1}{2} + \frac{1}{2}\cos(4x)]} \, dx[/tex]

Integrate

[tex]V = \pi [\frac{x}{2} + \frac{1}{8}\sin(4x)]\limits^{\frac{\pi}{4}}_0[/tex]

Expand

[tex]V = \pi ([\frac{\frac{\pi}{4}}{2} + \frac{1}{8}\sin(4*\frac{\pi}{4})] - [\frac{0}{2} + \frac{1}{8}\sin(4*0)])[/tex]

[tex]V = \pi ([\frac{\frac{\pi}{4}}{2} + \frac{1}{8}\sin(4*\frac{\pi}{4})] - [0 + 0])[/tex]

[tex]V = \pi ([\frac{\frac{\pi}{4}}{2} + \frac{1}{8}\sin(4*\frac{\pi}{4})])[/tex]

[tex]V = \pi ([{\frac{\pi}{8} + \frac{1}{8}\sin(\pi)])[/tex]

[tex]\sin \pi = 0[/tex]

So:

[tex]V = \pi ([{\frac{\pi}{8} + \frac{1}{8}*0])[/tex]

[tex]V = \pi *[{\frac{\pi}{8}][/tex]

[tex]V = \frac{\pi^2}{8}[/tex]

or

[tex]V = \frac{3.14^2}{8}[/tex]

[tex]V = 1.23245[/tex]