Respuesta :

i hope this helps you


x=3
Ver imagen Аноним

Answer:

x = 3

Step-by-step explanation:

  Given:[tex]\log _{x-1}\left(16\right)=4[/tex]

We have to solve for x.

Consider the given expression [tex]\log _{x-1}\left(16\right)=4[/tex]

[tex]\mathrm{Apply\:log\:rule}:\quad \log _a\left(b\right)=\frac{\ln \left(b\right)}{\ln \left(a\right)}[/tex]

[tex]\log _{x-1}\left(16\right)=\frac{\ln \left(16\right)}{\ln \left(x-1\right)}[/tex]

Thus, the expression becomes,

[tex]\frac{\ln \left(16\right)}{\ln \left(x-1\right)}=4[/tex]

Multiply both side by [tex]\ln \left(x-1\right)[/tex]

[tex]\frac{\ln \left(16\right)}{\ln \left(x-1\right)}\ln \left(x-1\right)=4\ln \left(x-1\right)[/tex]

Simplify, we get,

[tex]\ln \left(16\right)=4\ln \left(x-1\right)[/tex]

Divide both side by 4, we have,

[tex]\frac{4\ln \left(x-1\right)}{4}=\frac{\ln \left(16\right)}{4}[/tex]

[tex]\frac{\ln \left(16\right)}{4}:\quad \ln \left(2\right)[/tex]

Thus, [tex]\ln \left(x-1\right)=\ln(2)[/tex]

[tex]\mathrm{When\:the\:logs\:have\:the\:same\:base:\:\:}\log _b\left(f\left(x\right)\right)=\log _b\left(g\left(x\right)\right)\quad \Rightarrow \quad f\left(x\right)=g\left(x\right)[/tex]

thus, x - 1 = 2

simplify for x, we have,

x = 3