Answer: <8.01, 5.60>.
Step-by-step explanation:
Vector:
[tex]v= (r\cos\theta,r\sin\theta)[/tex]
, where r = magnitude and [tex]\theta[/tex] = angle .
As per given,
[tex]u=(4\cos 50^{\circ}, 4\sin 50^{\circ})\\\\\approx(4(0.64),4(0.77))\\\\=(2.56, 3.08)[/tex]
[tex]v=(6\cos 25^{\circ}, 6\sin 25^{\circ})\\\\\approx(6(0.91),6(0.42))\\\\=(5.46, 2.52)[/tex]
Consider
[tex]u+v=(2.56,3.08)+(5.46,2.52)\\\\=(2.56+5.46,3.08+2.52)\\\\=(8.02,\ 5.60)[/tex]
Hence, the correct option is <8.01, 5.60>.