1.


For the graph of the function, identify the axis of symmetry, vertex and the formula for the function.


A. Axis of symmetry: x = –0.5; Vertex: (–0.5, 0.75); f(x) = –x2 + x


B. Axis of symmetry: x = –0.5; Vertex: (–0.5, 0.75); f(x) = x2 + x + 1


C. Axis of symmetry: x = –0.5; Vertex: (–0.5, –0.75); f(x) = x2 – x + 1


D. Axis of symmetry: x = –0.5; Vertex: (–0.5, 0.75); f(x) = x2 + 2x + 1

1 For the graph of the function identify the axis of symmetry vertex and the formula for the function A Axis of symmetry x 05 Vertex 05 075 fx x2 x B Axis of sy class=

Respuesta :

Answer:

D. Axis of symmetry: x = –0.5; Vertex: (–0.5, 0.75); f(x) = x2 + 2x + 1

Step-by-step explanation:

A. Graph the parabola using the direction, vertex, focus, and axis of symmetry.

Direction: Opens Down

Vertex:  

( 1 /2 , 1 /4 )

Focus:  

( 1 /2 , 0 )

Axis of Symmetry:  

x

=

1

2

Directrix:  

y

=

1

2

x

y

− 2

− 6

− 1

− 2

1

2

1

4

1

0

2

− 2

B. Graph the parabola using the direction, vertex, focus, and axis of symmetry.

Direction: Opens Up

Vertex:  

( − 1 /2 , 3 /4 )

Focus:  

( − 1 /2 , 1 )

Axis of Symmetry:  

x

=

1

2

Directrix:  

y

=

1

2

x

y

− 2

3

− 1

1

− 1

2

3

4

1

3

2

7

C. Graph the parabola using the direction, vertex, focus, and axis of symmetry.

Direction: Opens Up

Vertex:  

( 1 /2 , 3 /4 )

Focus:  

( 1 /2 , 1 )

Axis of Symmetry:  

x

=

1

2

Directrix:  

y

=

1

2

x

y

− 2

7

− 1

3

1

2

3

4

1

1

2

3

D. Graph the parabola using the direction, vertex, focus, and axis of symmetry.

Direction: Opens Up

Vertex:  

( − 1 , 0 )

Focus:  

( − 1 , 1 /4 )

Axis of Symmetry:  

x

=

− 1

Directrix:  

y

=

− 1

4

x

y

− 3

4

− 2

1

− 1

0

0

1

1

4

Ver imagen lalamcg115
Ver imagen lalamcg115
Ver imagen lalamcg115
Ver imagen lalamcg115