Respuesta :
Answer:
D. Axis of symmetry: x = –0.5; Vertex: (–0.5, 0.75); f(x) = x2 + 2x + 1
Step-by-step explanation:
A. Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Down
Vertex:
( 1 /2 , 1 /4 )
Focus:
( 1 /2 , 0 )
Axis of Symmetry:
x
=
1
2
Directrix:
y
=
1
2
x
y
− 2
− 6
− 1
− 2
1
2
1
4
1
0
2
− 2
B. Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
( − 1 /2 , 3 /4 )
Focus:
( − 1 /2 , 1 )
Axis of Symmetry:
x
=
−
1
2
Directrix:
y
=
1
2
x
y
− 2
3
− 1
1
− 1
2
3
4
1
3
2
7
C. Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
( 1 /2 , 3 /4 )
Focus:
( 1 /2 , 1 )
Axis of Symmetry:
x
=
1
2
Directrix:
y
=
1
2
x
y
− 2
7
− 1
3
1
2
3
4
1
1
2
3
D. Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
( − 1 , 0 )
Focus:
( − 1 , 1 /4 )
Axis of Symmetry:
x
=
− 1
Directrix:
y
=
− 1
4
x
y
− 3
4
− 2
1
− 1
0
0
1
1
4