Graph the image of ABC with vertices A(2,3), B(-4,4), C(-1,-3) after the glide reflection.
Translation:(x,y)—>(x+2,y)
Reflection: in the x-axis

Graph the image of ABC with vertices A23 B44 C13 after the glide reflection Translationxygtx2y Reflection in the xaxis class=

Respuesta :

Given:

The vertices of the triangle ABC are A(2,3), B(-4,4), C(-1,-3).

Translation: [tex](x,y)\to (x+2,y)[/tex]

Reflection: in the x-axis.

To find:

The graph of the image.

Solution:

The vertices of the triangle ABC are A(2,3), B(-4,4), C(-1,-3).

The rule of translation is:

[tex](x,y)\to (x+2,y)[/tex]

The points after translations are:

[tex]A(2,3)\to A'(2+2,3)[/tex]

[tex]A(2,3)\to A'(4,3)[/tex]

[tex]B(-4,4)\to B'(-4+2,4)[/tex]

[tex]B(-4,4)\to B'(-2,4)[/tex]

[tex]C(-1,-3)\to C'(-1+2,-3)[/tex]

[tex]C(-1,-3)\to C'(1,-3)[/tex]

After that the figure is reflected across the x-axis. So, the rule of reflection is:

[tex](x,y)\to (x,-y)[/tex]

[tex]A'(4,3)\to A''(4,-3)[/tex]

[tex]B'(-2,4)\to B''(-2,-4)[/tex]

[tex]C'(1,-3)\to C''(1,3)[/tex]

The vertices of image are A''(4,-3), B''(-2,-4), C''(1,3).

Ver imagen erinna