Respuesta :

Answer:

[tex](a)\ 257 * [-1] =-257[/tex]

[tex](b)\ (-30) * [9] =-270[/tex]

(c) The additive inverse of -21 is 21

[tex](d)\ 918 *[0]=0[/tex]

[tex](e)\ (-56) * [(-9)+(-1)] = 560[/tex]

Step-by-step explanation:

Required

Fill in the blanks

Represent all blanks with x

[tex](a)\ 257 * x =-257[/tex]

Divide both sides by 257

[tex]x =\frac{-257}{257}[/tex]

[tex]x = -1[/tex]

So:

[tex](a)\ 257 * [-1] =-257[/tex]

[tex](b)\ (-30) * x =-270[/tex]

Divide both sides by -30

[tex]x =\frac{-270}{-30}[/tex]

[tex]x = 9[/tex]

So:

[tex](b)\ (-30) * [9] =-270[/tex]

(c)The complete question here is to determine the additive inverse of (-21)

The [tex]additive[/tex] [tex]inverse[/tex] of a [tex]number[/tex] x is -x

So:

[tex](-21) \to -(-21)[/tex]

[tex](-21) \to 21[/tex]

[tex](d)\ 918 *x=0[/tex]

Divide both sides by 918

[tex]x=\frac{0}{918}[/tex]

[tex]x = 0[/tex]

So:

[tex](d)\ 918 *[0]=0[/tex]

[tex](e)\ (-56) * [(-9)+(-1)] = x[/tex]

Solve the inner brackets

[tex](-56) * [-9-1] = x[/tex]

[tex](-56) * [-10] = x[/tex]

Multiply

[tex]560 = x[/tex]

So:

[tex](e)\ (-56) * [(-9)+(-1)] = 560[/tex]