Answer:
[tex](a)\ 257 * [-1] =-257[/tex]
[tex](b)\ (-30) * [9] =-270[/tex]
(c) The additive inverse of -21 is 21
[tex](d)\ 918 *[0]=0[/tex]
[tex](e)\ (-56) * [(-9)+(-1)] = 560[/tex]
Step-by-step explanation:
Required
Fill in the blanks
Represent all blanks with x
[tex](a)\ 257 * x =-257[/tex]
Divide both sides by 257
[tex]x =\frac{-257}{257}[/tex]
[tex]x = -1[/tex]
So:
[tex](a)\ 257 * [-1] =-257[/tex]
[tex](b)\ (-30) * x =-270[/tex]
Divide both sides by -30
[tex]x =\frac{-270}{-30}[/tex]
[tex]x = 9[/tex]
So:
[tex](b)\ (-30) * [9] =-270[/tex]
(c)The complete question here is to determine the additive inverse of (-21)
The [tex]additive[/tex] [tex]inverse[/tex] of a [tex]number[/tex] x is -x
So:
[tex](-21) \to -(-21)[/tex]
[tex](-21) \to 21[/tex]
[tex](d)\ 918 *x=0[/tex]
Divide both sides by 918
[tex]x=\frac{0}{918}[/tex]
[tex]x = 0[/tex]
So:
[tex](d)\ 918 *[0]=0[/tex]
[tex](e)\ (-56) * [(-9)+(-1)] = x[/tex]
Solve the inner brackets
[tex](-56) * [-9-1] = x[/tex]
[tex](-56) * [-10] = x[/tex]
Multiply
[tex]560 = x[/tex]
So:
[tex](e)\ (-56) * [(-9)+(-1)] = 560[/tex]