Respuesta :

Answer:

n = (1/2)(-1 ± i√2)

Step-by-step explanation:

Among the several ways in which quadratic equations can be solved is the quadratic formula.  Putting to use the coefficients {12, 12, 9}, we obtain the discriminant, b^2 - 4ac:  12^2 - 4(12)(9) = 144 - 432 = -288.  The negative sign of this discriminant tells us that the quadratic has two unequal, complex roots.  These roots are:

      -b ± √(discriminant)

n = ---------------------------------

                 2a

Here we have:

      -12 ± √(-288)           -12 ± i√2√144          -12 ± i12√2

n = ----------------------  =  ------------------------ =  --------------------

            2(12)                             24                           24

or:

n = (1/2)(-1 ± i√2)