prove the following [tex]\bold{algebraically}[/tex]:
[tex] \displaystyle \frac{ {29}^{3} + {29}^{2} + 30 }{ {29}^{4} - 1} = \frac{1}{28} [/tex]
​​

Respuesta :

Nayefx

Answer:

see below

Step-by-step explanation:

we are given

[tex] \displaystyle \frac{ {29}^{3} + {29}^{2} + 30 }{ {29}^{4} - 1} = \frac{1}{28}[/tex]

we want to prove it algebraically

to do so rewrite 30:

[tex] \displaystyle \frac{ {29}^{3} + {29}^{2} + 29 + 1}{ {29}^{4} - 1} \stackrel{ ? }{= }\frac{1}{28}[/tex]

let 29 be a thus substitute:

[tex] \displaystyle \frac{ {a}^{3} + {a}^{2} + a + 1}{ {a}^{4} - 1} \stackrel{ ? }{= }\frac{1}{28}[/tex]

factor the denominator:

[tex] \rm\displaystyle \frac{ {a}^{3} + {a}^{2} + a + 1}{ ({a}^{2} + 1) (a- 1)(a + 1)} \stackrel{ ? }{= }\frac{1}{28}[/tex]

Factor out a²:

[tex] \rm\displaystyle \frac{ {a}^{2} ({a}^{} + 1)+ a + 1}{ ({a}^{2} + 1) (a- 1)(a + 1)} \stackrel{ ? }{= }\frac{1}{28}[/tex]

factor out 1:

[tex] \rm\displaystyle \frac{ {a}^{2} ({a}^{} + 1)+1( a + 1)}{ ({a}^{2} + 1) (a- 1)(a + 1)} \stackrel{ ? }{= }\frac{1}{28}[/tex]

group:

[tex] \rm\displaystyle \frac{ ({a}^{2} +1)( a + 1)}{ ({a}^{2} + 1) (a + 1)(a - 1)} \stackrel{ ? }{= }\frac{1}{28}[/tex]

reduce fraction:

[tex] \rm\displaystyle \frac{ \cancel{({a}^{2} +1)( a + 1)}}{ \cancel{({a}^{2} + 1) (a + 1)}(a - 1)} \stackrel{ ? }{= }\frac{1}{28}[/tex]

[tex] \displaystyle \frac{1}{a - 1} \stackrel {?}{ = } \frac{1}{28} [/tex]

substitute back:

[tex] \displaystyle \frac{1}{29 - 1} \stackrel {?}{ = } \frac{1}{28} [/tex]

simplify substraction:

[tex] \displaystyle \frac{1}{28} \stackrel { \checkmark}{ = } \frac{1}{28} [/tex]

hence Proven

msm555

Answer:

Solution given:

L.H.S.

[tex] \displaystyle \frac{ {29}^{3} + {29}^{2} + 29+1 }{ {29}^{4} - 1} [/tex]

Let 29 be x.

[tex] \displaystyle \frac{ {x}^{3} + {x}^{2} + x+1 }{ {x}^{4} - 1} [/tex]

[tex] \displaystyle \frac{ {x}^{2} (x+ 1) +1( x+1 )}{ ({x}^{2} )²- 1²} [/tex]

[tex] \displaystyle \frac{ (x²+1)( x+1 )}{ (x²+1)(x²-1²)} [/tex]

[tex] \displaystyle \frac{ (x²+1)( x+1 )}{ (x²+1)(x+1)(x-1)} [/tex]

[tex] \displaystyle \frac{1}{x-1}[/tex]

substituting value.

[tex] \displaystyle \frac{1}{29-1}[/tex]

[tex] \displaystyle \frac{1}{28}[/tex]

R.H.S.

proved.