Respuesta :
The probability that both the balls are red = [tex]\bold{\frac{11}{20}}[/tex]
What is probability?
"Probability is a branch of mathematics which deals with finding out the likelihood of the occurrence of an event."
Formula of the probability of an event A is:
P(A) = n(A)/n(S)
where, n(A) is the number of favorable outcomes, n(S) is the total number of events in the sample space.
What is the formula of combination?
"[tex]^nC_r=\frac{n!}{r!(n-r)!}[/tex]"
For given question,
a bag contains 12 red, 3 white and 1 blue balls.
Total balls = 12 + 3 + 1
Total = 16
Two balls are drawn from a bag.
The number of possible ways of drawing 2 balls from the bag are:
Using combination formula,
[tex]^{16}C_2\\\\=\frac{16!}{2!(16-2)!}\\\\ =\frac{16!}{2!\times 12!}\\\\ =120[/tex]
So, n(S) = 120
Two balls are drawn with replacement from a bag.
We need to find the probability that both are red.
Let event A: both the balls are red
[tex]\Rightarrow n(A)=^{12}C_2[/tex]
Using combination formula,
[tex]^{12}C_2\\\\=\frac{12!}{2!\times (12-2)!}\\\\= \frac{12!}{2!\times 10!}\\\\ =66[/tex]
Using probability formula,
[tex]\Rightarrow P(A)=\frac{n(A)}{n(S)}\\\\\Rightarrow P(A)=\frac{66}{120}\\\\\Rightarrow P(A)=\frac{11}{20}[/tex]
Therefore, the probability that both the balls are red = [tex]\bold{\frac{11}{20}}[/tex]
Learn more about probability here:
brainly.com/question/11234923
#SPJ2