Respuesta :
Answer:
[tex]P = 8 + 2\sqrt{26}[/tex]
Step-by-step explanation:
Given
[tex]W = (-2, 4)[/tex]
[tex]X = (2, 4)[/tex]
[tex]Y = (1, -1)[/tex]
[tex]Z = (-3,-1)[/tex]
Required
The perimeter
First, calculate the distance between each point using:
[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 -y_2)^2[/tex]
So, we have:
[tex]WX = \sqrt{(-2- 2)^2 + (4-4)^2 } =4[/tex]
[tex]XY = \sqrt{(2- 1)^2 + (4--1)^2 } =\sqrt{26}[/tex]
[tex]YZ = \sqrt{(1- -3)^2 + (-1--1)^2 } =4[/tex]
[tex]ZW = \sqrt{(-3--2)^2 + (-1-4)^2 } =\sqrt{26}[/tex]
So, the perimeter (P) is:
[tex]P = 4 + \sqrt{26} + 4 + \sqrt{26}[/tex]
[tex]P = 8 + 2\sqrt{26}[/tex]
The perimeter of parallelogram WXYZ is 8 + 2√26 units
Perimeter of parallelogram
In order to determine the required perimeter of the parallelogram, we will use the distance formula as shown:
D= √(x2-x1)²+(y2-y1)²
Given the coordinate of the parallelogram shown as:
W(-2, 4)
X (2, 4)
Y(1, -1)
Z(-3, -1).
Since it is a parallelogram, the opposite sides are equal that is:
WX = YZ and XY = WZ
WX = YZ = √(x2-x1)²+(y2-y1)²
WX = YZ = √(2+2)²+(4-4)²
WX = YZ =√(4)²
WX = YZ = 4 units
Similarly
XY = WZ = √(2-1)²+(4+1)²
XY = WZ = √(1)²+(5)²
XY = WZ = √26
Perimeter = 2(4)+ 2(√26)
Perimeter = 8 + 2√26
Hence the perimeter of parallelogram WXYZ is 8 + 2√26 units
Learn more on perimeter of parallelogram here: https://brainly.com/question/11185474