Respuesta :

Answer with Step-by-step explanation:

We are given that

[tex]a+ib=\sqrt{\frac{1+i}{1-i}}[/tex]

We have to prove that

[tex]a^2+b^2=1[/tex]

[tex]a+ib=\sqrt{\frac{(1+i)(1+i)}{(1-i)(1+i)}}[/tex]

Using rationalization property

[tex]a+ib=\sqrt{\frac{(1+i)^2}{(1^2-i^2)}}[/tex]

Using the property

[tex](a+b)(a-b)=a^2-b^2[/tex]

[tex]a+ib=\sqrt{\frac{(1+i)^2}{(1-(-1))}}[/tex]

Using

[tex]i^2=-1[/tex]

[tex]a+ib=\frac{1+i}{\sqrt{2}}[/tex]

[tex]a+ib=\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}}[/tex]

By comparing we get

[tex]a=\frac{1}{\sqrt{2}}, b=\frac{1}{\sqrt{2}}[/tex]

[tex]a^2+b^2=(\frac{1}{\sqrt{2}})^2+(\frac{1}{\sqrt{2}})^2[/tex]

[tex]a^2+b^2=\frac{1}{2}+\frac{1}{2}[/tex]

[tex]a^2+b^2=\frac{1+1}{2}[/tex]

[tex]a^2+b^2=\frac{2}{2}[/tex]

[tex]a^2+b^2=1[/tex]

Hence, proved.