Step-by-step explanation:
Given that,
To find,
Firstly we'll find the base radius of the cylinder.
[tex]\longmapsto\rm{V_{(Cylinder)} = \pi r^2h}\\[/tex]
According to the question,
[tex]\longmapsto\rm{616= \dfrac{22}{7} \times r^2 \times 4}\\[/tex]
[tex]\longmapsto\rm{616 \times 7 = 22 \times r^2 \times 4}\\[/tex]
[tex]\longmapsto\rm{4312 = 88 \times r^2 }\\[/tex]
[tex]\longmapsto\rm{\cancel{\dfrac{4312}{88}} = r^2 }\\[/tex]
[tex]\longmapsto\rm{49 = r^2 }\\[/tex]
[tex]\longmapsto\rm{\sqrt{49} = r }\\[/tex]
[tex]\longmapsto\rm{7 \; cm = r }\\[/tex]
Now,
[tex]\longmapsto\rm{Diameter = 2r }\\[/tex]
[tex]\longmapsto\rm{Diameter = 2(7 \; cm) }\\[/tex]
[tex]\longmapsto\bf{Diameter = 14 \; cm}\\[/tex]
The required answer is 14 cm.