Respuesta :
Step-by-step explanation:
- log1000= log 10³= 3 log10 =3
- log(128/625)= 7 log 2+ 4 log 5
- log x²y³z⁴= 2 logx + 3 log y + 4 log z
- log p²q³/r= 2 log p +3 log q - log r
- log√(x³/y²)=3/2[ log (x)] - log y
x²+y²=25xy
(x+y)²-2xy=25xy
(x+y)²= 2xy +25 xy
=27xy
Take log on both sides
2 log(x+y) =log 27 + log x + log y
=log 3³+ log x + log y
2 log(x+y)=3 log 3 + log x + log y
Answer:
(1)
- log 1000 = log 10³ = 3 log 10 = 3
(2) It should be with log? If yes ignore log x and consider the right side
- (128/625) = x
- log x = log (128/625)
- log x = log 128 - log 625
- log x = 7 log 2 - 4 log 5
(3)
- log (x²y³z⁴) = log x² + log y³ + log z⁴ = 2 log x + 3 log y + 4 log z
(4)
- log (p²q³/r) = log p² + log q³ - log r = 2 log p + 3 log q - log r
(5)
- log [tex]\sqrt{\frac{x^3}{y2} }[/tex] = 1/2 log [tex]x^3y^{-2}[/tex] = 3/2 log x - log y
(6)
- x² + y² = 25xy
- x² + 2xy + y² = 27xy
- (x + y)² = 27xy
- log (x + y)² = log (27xy)
- 2 log (x + y) = log 3³+ log x + log y
- 2 log (x + y) = 3 log 3 + log x + log y
- Proved