Respuesta :
Use the power, product, and chain rules:
[tex]y = x^2 (3x-1)^3[/tex]
• product rule
[tex]\dfrac{\mathrm dy}{\mathrm dx} = \dfrac{\mathrm d(x^2)}{\mathrm dx}\times(3x-1)^3 + x^2\times\dfrac{\mathrm d(3x-1)^3}{\mathrm dx}[/tex]
• power rule for the first term, and power/chain rules for the second term:
[tex]\dfrac{\mathrm dy}{\mathrm dx} = 2x\times(3x-1)^3 + x^2\times3(x-1)^2\times\dfrac{\mathrm d(3x-1)}{\mathrm dx}[/tex]
• power rule
[tex]\dfrac{\mathrm dy}{\mathrm dx} = 2x\times(3x-1)^3 + x^2\times3(3x-1)^2\times3[/tex]
Now simplify.
[tex]\dfrac{\mathrm dy}{\mathrm dx} = 2x(3x-1)^3 + 9x^2(3x-1)^2 \\\\ \dfrac{\mathrm dy}{\mathrm dx} = x(3x-1)^2 \times (2(3x-1) + 9x) \\\\ \boxed{\dfrac{\mathrm dy}{\mathrm dx} = x(3x-1)^2(15x-2)} [/tex]
You could also use logarithmic differentiation, which involves taking logarithms of both sides and differentiating with the chain rule.
On the right side, the logarithm of a product can be expanded as a sum of logarithms. Then use other properties of logarithms to simplify
[tex]\ln(y) = \ln\left(x^2(3x-1)^3\right) \\\\ \ln(y) = \ln\left(x^2\right) + \ln\left((3x-1)^3\right) \\\\ \ln(y) = 2\ln(x) + 3\ln(3x-1)[/tex]
Differentiate both sides and you end up with the same derivative:
[tex]\dfrac1y\dfrac{\mathrm dy}{\mathrm dx} = \dfrac2x + \dfrac9{3x-1} \\\\ \dfrac1y\dfrac{\mathrm dy}{\mathrm dx} = \dfrac{15x-2}{x(3x-1)} \\\\ \dfrac{\mathrm dy}{\mathrm dx} = \dfrac{15x-2}{x(3x-1)} \times x^2(3x-1)^3 \\\\ \dfrac{\mathrm dy}{\mathrm dx} = x(15x-2)(3x-1)^2[/tex]