Answer:
C. y= -2x^2 + 4
Step-by-step explanation:
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Down
Vertex:
(
0
,
−
4
)
Focus:
(
0
,
−
33
8
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
−
31
8
x
y
−
2
−
12
−
1
−
6
0
−
4
1
−
6
2
−
12
________________
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
(
0
,
4
)
Focus:
(
0
,
33
8
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
31
8
x
y
−
2
12
−
1
6
0
4
1
6
2
12
______________
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Down
Vertex:
(
0
,
4
)
Focus:
(
0
,
31
8
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
33
8
x
y
−
2
−
4
−
1
2
0
4
1
2
2
−
4
_______________
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
(
0
,
−
4
)
Focus:
(
0
,
−
31
8
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
−
33
8
x
y
−
2
4
−
1
−
2
0
−
4
1
−
2
2
4