Find your own values that prove that tan(u-v) does not equal tan u - tan v. Show your work and explain why you chose these values.

Find your own values that prove that tanuv does not equal tan u tan v Show your work and explain why you chose these values class=

Respuesta :

To prove that tan(u - v) does not equal tan u - tan v, we start by assuming values for u and v.

To do this, we assume the following values

[tex]\mathbf{u = 75}[/tex]

[tex]\mathbf{v = 45}[/tex]

So, we have:

[tex]\mathbf{tan(u - v) \ne tan(u) - tan(v)}[/tex]

Substitute the assumed values for u and v

[tex]\mathbf{tan(75 - 45) \ne tan(75) - tan(45)}[/tex]

Subtract 45 from 75

[tex]\mathbf{tan(30) \ne tan(75) - tan(45)}[/tex]

Using a calculator, calculate the values of tan(30), tan(45) and tan(75)

So, we have:

[tex]\mathbf{0.5774 \ne 3.7321 - 1}[/tex]

Subtract 1 from 3.7321

[tex]\mathbf{0.5774 \ne 2.7321}[/tex]

Notice that the expression on the left-hand side and the expression on the right-hand side are not equal.

Hence, [tex]\mathbf{tan(u - v) \ne tan(u) - tan(v)}[/tex] is true

Read more about proofs of trigonometry at:

https://brainly.com/question/22698523