To prove that tan(u - v) does not equal tan u - tan v, we start by assuming values for u and v.
To do this, we assume the following values
[tex]\mathbf{u = 75}[/tex]
[tex]\mathbf{v = 45}[/tex]
So, we have:
[tex]\mathbf{tan(u - v) \ne tan(u) - tan(v)}[/tex]
Substitute the assumed values for u and v
[tex]\mathbf{tan(75 - 45) \ne tan(75) - tan(45)}[/tex]
Subtract 45 from 75
[tex]\mathbf{tan(30) \ne tan(75) - tan(45)}[/tex]
Using a calculator, calculate the values of tan(30), tan(45) and tan(75)
So, we have:
[tex]\mathbf{0.5774 \ne 3.7321 - 1}[/tex]
Subtract 1 from 3.7321
[tex]\mathbf{0.5774 \ne 2.7321}[/tex]
Notice that the expression on the left-hand side and the expression on the right-hand side are not equal.
Hence, [tex]\mathbf{tan(u - v) \ne tan(u) - tan(v)}[/tex] is true
Read more about proofs of trigonometry at:
https://brainly.com/question/22698523