The values of [tex]a[/tex] and [tex]b[/tex] are [tex]a = \frac{3}{2}[/tex] and [tex]b = 3[/tex], respectively.
In this question we need to solve the linear equation for each point, first for [tex](x,y) = (b, 1)[/tex] and later for [tex](x,y) = (a, b)[/tex].
If we know that [tex](x,y) = (b, 1)[/tex], then the value of [tex]b[/tex] is:
[tex]6 = 30-8\cdot b[/tex]
[tex]8\cdot b = 24[/tex]
[tex]b = 3[/tex]
If we know that [tex](x,y) = (a, b)[/tex] and [tex]b = 3[/tex], then the value of [tex]a[/tex] is:
[tex]6\cdot b = 30 - 8\cdot a[/tex]
[tex]18 = 30-8\cdot a[/tex]
[tex]12 = 8\cdot a[/tex]
[tex]a = \frac{3}{2}[/tex]
The values of [tex]a[/tex] and [tex]b[/tex] are [tex]a = \frac{3}{2}[/tex] and [tex]b = 3[/tex], respectively.
To learn more on linear functions, we kindly invite to check this question: https://brainly.com/question/5101300