Respuesta :
Using the normal distribution, it is found that 0.26% of the items will either weigh less than 87 grams or more than 93 grams.
In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
In this problem:
- The mean is of 90 grams, hence [tex]\mu = 90[/tex].
- The standard deviation is of 1 gram, hence [tex]\sigma = 1[/tex].
We want to find the probability of an item differing more than 3 grams from the mean, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{3}{1}[/tex]
[tex]Z = 3[/tex]
The probability is P(|Z| > 3), which is 2 multiplied by the p-value of Z = -3.
- Looking at the z-table, Z = -3 has a p-value of 0.0013.
2 x 0.0013 = 0.0026
0.0026 x 100% = 0.26%
0.26% of the items will either weigh less than 87 grams or more than 93 grams.
For more on the normal distribution, you can check https://brainly.com/question/24663213