Respuesta :
Answer:
117 students, 8 adults
Step-by-step explanation:
Let's say a adults went and s students went.
Total cost for adults = 23 for each a = 23a
Total cost for each student = 16s
Number of adults and students = a + s = 125
Total cost = 23a + 16s = 2056
a + s = 125
23a + 16s = 2056
We can solve this by solving for a and then plugging that into the other equation, making it so that there is only one variable
subtract s from both sides in the first equation
a = 125 - s
plug that into the second equation
23(125 - s) + 16s = 2056
2875 - 23s + 16s = 2056
2875 - 7s = 2056
subtract 2875 from both sides to isolate s and its coefficient
-7s = -819
divide both sides by -7 to isolate s
s = 117
a = 125 - s = 125 - 117 = 8
Answer:
Answer:
Chaperones = 8 and Student = 117
Step-by-step explanation:
Let,
Chaperones = x
Student = y
x + y = 125
=> x = 125 - y (1)
23x + 16y = 2056
=> 23(125 - y) + 16y = 2056
=> 2875 - 23y + 16y = 2056
=> 2875 - 7y = 2056
=> 2875 - 2056 = 7y
=> 819 = 7y
=> 819/7 = y
=> 117 = y
From 1
=> x = 125 - 117
=> x = 8