[tex] - 3 \sqrt{180 {x}^{5}y } = - 3 \sqrt{36 {x}^{4} \times 5xy } = - 18 {x}^{2} \sqrt{5xy} [/tex]
[tex]5 \sqrt{108xy {z}^{2} } = 5 \sqrt{36 {z}^{2} \times 3xy } = 30z \sqrt{3xy} [/tex]
[tex]3x \sqrt{x {y}^{10} {z}^{7} } = 3x \sqrt{ {y}^{10} {z}^{6} \times xz } = 3x {y}^{5} {z}^{3} \sqrt{xz} [/tex]
[tex] \sqrt{ {x}^{3} } = \sqrt{ {x}^{2} \times x } = x \sqrt{x} [/tex]
[tex] \sqrt{x {y}^{3}z } = y \sqrt{xyz} [/tex]
[tex] \sqrt{18 {x}^{2}y } = \sqrt{9 {x}^{2} \times 2y } = 3x \sqrt{2y} [/tex]
[tex] \sqrt{32 {x}^{4} {y}^{2} } = \sqrt{16 ({ {x}^{2} })^{2} {y}^{2} \times 2 } = 4 {x}^{2} y \sqrt{2} [/tex]
[tex]2 \sqrt{16 {x}^{7} {y}^{3} {z}^{4} } = 2 \sqrt{ {4}^{2} {x}^{6} {y}^{2} ( { {z}^{2} )}^{2} \times xy } = 8 {x}^{3} y {z}^{2} \sqrt{xy} [/tex]
[tex] {x}^{2} \sqrt{ {x}^{3} {y}^{2} } = {x}^{2} \sqrt{ {x}^{2} {y}^{2} \times x } = {x}^{3} y \sqrt{x} [/tex]
Answer: ......
Ok done. Thank to me :>