Respuesta :

Answer:

  (a) no

  (b) -1, (2, -1)

  (c) 4, (4, 7)

  (d) no

Step-by-step explanation:

(a)

You can check by using x=3 in the function.

  f(3) = 4(3) -9 = 12 -9 = 3 . . . . not -3

The point (3, -3) is not on the graph.

__

(b)

Put x=2 into the function and evaluate:

  f(2) = 4(2) -9 = 8 -9

  f(2) = -1

  The point (2, -1) is on the graph.

__

(c)

Put f(x) = 7 into the equation and solve for x.

  7 = 4x -9

  16 = 4x

  4 = x

  The point (4, 7) is on the graph.

__

(d)

  no, see part (b)

Ver imagen sqdancefan

  • f(x)=4x-9

#a

  • (3,-3)

Lets check

[tex]\\ \rm\rightarrowtail -3=4(3)-9=12-9=3[/tex]

  • No

#b

x=2

[tex]\\ \rm\rightarrowtail f(2)=4(2)-9=8-9=-1[/tex]

#c

  • f(x)=7

[tex]\\ \rm\rightarrowtail 4x-9=7[/tex]

[tex]\\ \rm\rightarrowtail 4x=16[/tex]

[tex]\\ \rm\rightarrowtail x=4[/tex]

#d

  • x=2

Already done in 2nd bit .

  • No not a zero