Respuesta :

By brute force, we will see that the smallest 4-digit number that meets the conditions is 2,064.

How to find the least 4-digit number that is divisible by 24?

To do it, we just need to multiplicate 24 by integers (increasing the value of these integers) until we find the first product that has 4 digits. This is called brute force.

For example:

24*50 = 1,200

Nice, but we can only use even numbers, so we must be in the 2 thousand range.

Then let's multiply by 100

24*100 = 2,400

Now we need to go down, until we find the first product that meets the conditions, for example if we use 85 instead of 100, we get:

24*85 = 2040

Each digit can be used once, and here the zero appears twice, let's go to the next one:

24*86 = 2,064

Nice, this is the smallest 4-digit number that meets the conditions.

If you want to learn more about multiples, you can read:

https://brainly.com/question/10269328