Answer:
a. 2/3
b. [tex]\sqrt{2}[/tex]
c. 3
d. 5
e. 2
f. Undefined
Step-by-step explanation:
a. [tex]f(x)=\frac{|x-3|}{x+2}[/tex]
To find f(1), plug in 1 where every x is in the equation
[tex]f(1)=\frac{|1-3|}{1+2}=\frac{|-2|}{3}=\frac{2}{3}[/tex]
b. [tex]f(x) = \sqrt{x+1}[/tex]
[tex]f(1) = \sqrt{1+1}=\sqrt{2}[/tex]
c. [tex]f(x) = x^2+5x-3[/tex]
[tex]f(1) = (1)^2+5(1)-3=1+5-3=6-3=3[/tex]
d. [tex]f(x)=\frac{2x+3}{x}[/tex]
[tex]f(1)=\frac{2(1)+3}{1}=\frac{5}{1}=5[/tex]
e. [tex]f(x) = |2x-4|[/tex]
[tex]f(1) = |2(1)-4|=|2-4|=|-2|=2[/tex]
f. [tex]f(x)=\frac{7-2x}{x-1}[/tex]
[tex]f(1)=\frac{7-2(1)}{1-1}=\frac{5}{0}[/tex]
This equation is undefined when x=1 because 0 is the denominator of the fraction.