Jackie's conclusion about the quadrilateral is correct because the slopes are opposite reciprocals, and the side lengths are congruent
The vertices are given as:
A(2, 1), B(5, -1), C(3, -4), and D(0, -2)
The slope is calculated as:
[tex]m = \frac{y_2 - y_1}{x_2 -x_1}[/tex]
So, we have
[tex]AB = \frac{-1 -1}{5-2}[/tex]
[tex]AB = -\frac{2}{3}[/tex]
[tex]BC = \frac{-4 + 1}{3 -5}[/tex]
[tex]BC = \frac{3}{2}[/tex]
[tex]CD = \frac{-2 +4}{0-3}[/tex]
[tex]CD = -\frac{2}{3}[/tex]
[tex]DA = \frac{1 + 2}{2 - 0}[/tex]
[tex]DA = \frac{3}{2}[/tex]
The slope shows that the adjacent sides of the quadrilaterals are perpendicular to one another because the slopes are opposite reciprocals
The distance is calculated as:
[tex]d = \sqrt{(x_2 - x_1)^2 + (y_2 -y_1)^2[/tex]
So, we have:
[tex]AB = \sqrt{(2 - 5)^2 + (1 + 1)^2}[/tex]
[tex]AB = \sqrt{13}[/tex]
[tex]BC = \sqrt{(5 - 3)^2 + (-1 + 4)^2}[/tex]
[tex]BC = \sqrt{13}[/tex]
[tex]CD = \sqrt{(3 - 0)^2 + (-4 + 2)^2}[/tex]
[tex]CD = \sqrt{13}[/tex]
[tex]DA = \sqrt{(0 - 2)^2 + (-2 -1)^2}[/tex]
[tex]DA = \sqrt{13}[/tex]
The lengths indicate that the side lengths of the quadrilaterals are congruent
Because the slopes are opposite reciprocals, and the side lengths are equal; then we can conclude that Jackie's conclusion is correct
Read more about quadrilaterals at:
https://brainly.com/question/16691874