Respuesta :
Answer:
[tex]\left\{\begin{matrix}x=4\\y=10\\\end{matrix}\right.[/tex]
Step-by-step explanation:
Solve the equation
[tex]\left\{\begin{matrix}-5x+y=-10\\-4x-y=-26\\\end{matrix}\right.[/tex]
_____________________________________
Add the two equations
[tex]-5x+y+(-4x-y)=-10+(-26)[/tex]
____________________________
Remove parentheses
[tex]-5x+y-4x-y=-10-26[/tex]
_________________________________________________
Cancel one variable
[tex]-5x-4x=-10-26[/tex]
___________________________________________
Combine like terms
[tex]-9x=-10-26[/tex]
______________________________________________
Calculate the sum or difference
[tex]-9x=-36[/tex]
________________________________________________
Divide both sides of the equation by the coefficient of variable
[tex]x=\frac{-36}{-9}[/tex]
____________________________________________________
Determine the sign for multiplication or division
[tex]x=\frac{36}{9}[/tex]
_________________________________________
Cross out the common factor
[tex]x=4[/tex]
_____________________________________________
Step-by-step explanation:
Substitute into one of the equations
[tex]-4\times4-y=-26[/tex]
____________________________________________________
Calculate the product or quotient
[tex]-16-y=-26[/tex]
______________________________________________________
Rearrange variables to the left side of the equation
[tex]-y=-26+16[/tex]
_____________________________________________
Calculate the sum or difference
[tex]-y=-10[/tex]
_________________________________________-
Divide both sides of the equation by the coefficient of variable
[tex]y=10[/tex]
I hope this helps you
:)