Respuesta :

Answer:

[tex]\left\{\begin{matrix}x=4\\y=10\\\end{matrix}\right.[/tex]

Step-by-step explanation:

Solve the equation

[tex]\left\{\begin{matrix}-5x+y=-10\\-4x-y=-26\\\end{matrix}\right.[/tex]

_____________________________________

Add the two equations

[tex]-5x+y+(-4x-y)=-10+(-26)[/tex]

____________________________

Remove parentheses

[tex]-5x+y-4x-y=-10-26[/tex]

_________________________________________________

Cancel one variable

[tex]-5x-4x=-10-26[/tex]

___________________________________________

Combine like terms

[tex]-9x=-10-26[/tex]

______________________________________________

Calculate the sum or difference

[tex]-9x=-36[/tex]

________________________________________________

Divide both sides of the equation by the coefficient of variable

[tex]x=\frac{-36}{-9}[/tex]

____________________________________________________

Determine the sign for multiplication or division

[tex]x=\frac{36}{9}[/tex]

_________________________________________

Cross out the common factor

[tex]x=4[/tex]

_____________________________________________

Step-by-step explanation:

Substitute into one of the equations

[tex]-4\times4-y=-26[/tex]

____________________________________________________

Calculate the product or quotient

[tex]-16-y=-26[/tex]

______________________________________________________

Rearrange variables to the left side of the equation

[tex]-y=-26+16[/tex]

_____________________________________________

Calculate the sum or difference

[tex]-y=-10[/tex]

_________________________________________-

Divide both sides of the equation by the coefficient of variable

[tex]y=10[/tex]

I hope this helps you

:)