Respuesta :

Answer:

[tex]\sf x < \dfrac{16}{7} ,x > \dfrac{16}{7}[/tex]

Step-by-step explanation:

Given function:

[tex]\sf f[g(x)]=\dfrac{-6+23}{7x-16}[/tex]

The domain will be values of x that do NOT make the denominator zero:

[tex]\sf \implies 7x-16=0[/tex]

[tex]\sf \implies 7x=16[/tex]

[tex]\sf \implies x=\dfrac{16}{7}[/tex]

Therefore, the domain is [tex]\sf x\neq \dfrac{16}{7}[/tex] so

[tex]\sf x < \dfrac{16}{7} ,x > \dfrac{16}{7}[/tex]