Answer:
[tex]\sf x < \dfrac{16}{7} ,x > \dfrac{16}{7}[/tex]
Step-by-step explanation:
Given function:
[tex]\sf f[g(x)]=\dfrac{-6+23}{7x-16}[/tex]
The domain will be values of x that do NOT make the denominator zero:
[tex]\sf \implies 7x-16=0[/tex]
[tex]\sf \implies 7x=16[/tex]
[tex]\sf \implies x=\dfrac{16}{7}[/tex]
Therefore, the domain is [tex]\sf x\neq \dfrac{16}{7}[/tex] so
[tex]\sf x < \dfrac{16}{7} ,x > \dfrac{16}{7}[/tex]