The Schwarzschild radius of the black hole depends on its mass
The Schwarzschild radius of this supermassive black holeis 0.091 AU
The Schwarzschild radius (r) is calculated using:
[tex]r_s = \frac{2GM}{c^2}[/tex]
Where:
G = Gravitational constant = 6.67408 × 10-11 m3 kg-1 s-2
M = Mass of the object = 4.6 x 10^6 solar masses
c = Speed of light = 299792458 m / s
Express the mass in Kg
M = 4.6 x 10^6 * 9.2 * 10^18 = 9.15 * 10^36 kg
Substitute the above values in the equation
[tex]r_s = \frac{2 * 6.67408 * 10^{-11} * 9.15 * 10^36}{299792458 ^2}[/tex]
Evaluate the expression
[tex]r_s = 13589425339.6[/tex] m
Express as km
[tex]r_s = 13589425.3396[/tex] km
Expressas AU
[tex]r_s = \frac{13589425.3396}{1.5 * 10^8}[/tex]
Evaluate the quotient
[tex]r_s = 0.09059616893[/tex]
Approximate
[tex]r_s = 0.091\ AU[/tex]
Hence, the Schwarzschild radius of this supermassive black holeis 0.091 AU
Read more about gravitational radius at:
https://brainly.com/question/4208016