Respuesta :
Answer:
B
Step-by-step explanation:
Convert from mixed numbers to improper fractions:
[tex]\sf area=90 \frac{3}{10}=\dfrac{90 \cdot 10+3}{10}=\dfrac{903}{10}[/tex]
[tex]\sf length=10\frac12=\dfrac{10 \cdot 2+1}{2}=\dfrac{21}{2}[/tex]
Area of a rectangle = length x width
⇒ width = area ÷ length
[tex]\sf \implies width=\dfrac{903}{10} \div \dfrac{21}{2}[/tex]
[tex]\sf \implies width=\dfrac{903}{10} \times \dfrac{2}{21}[/tex]
[tex]\sf \implies width=\dfrac{1806}{210}[/tex]
[tex]\sf \implies width=\dfrac{1806 \div 42}{210 \div 42}[/tex]
[tex]\sf \implies width=\dfrac{43}{5}[/tex]
[tex]\sf \implies width=8\frac35[/tex]
[tex] \pink{ \text{Given:}}[/tex]
[tex] \\ [/tex]
[tex] \star \sf{}Area =90 \dfrac{3}{10} [/tex]
[tex] \\ [/tex]
[tex] \star \sf{}Length =10 \dfrac{1}{2} [/tex]
[tex] \\ \\ [/tex]
[tex] \purple{ \text{To~Find:}}[/tex]
[tex] \\ \\ [/tex]
[tex] \star \sf Width \: of \: rectangle[/tex]
[tex] \\ \\ [/tex]
[tex] \orange{ \text{Solution:}}[/tex]
[tex] \\ \\ [/tex]
So first convert length and area from fraction form to decible.
[tex] \leadsto\sf{}Area =90 \dfrac{3}{10} [/tex]
[tex] \\ [/tex]
[tex] \leadsto\sf{}Area = \dfrac{903}{10} [/tex]
[tex] \\ [/tex]
[tex] \leadsto\sf{}Area =90.3[/tex]
[tex] \\ [/tex]
Now convert value length into decibel .
[tex] \\ [/tex]
[tex] \leadsto\sf{}Length =10 \dfrac{1}{2} [/tex]
[tex] \\ [/tex]
[tex] \leadsto\sf{}Length = \dfrac{21}{2} [/tex]
[tex] \\ [/tex]
[tex] \leadsto\sf{}Length = 10.5[/tex]
[tex] \\ [/tex]
We know :-
[tex]\bigstar\boxed{\rm Area~of~rectangle= length \times width}[/tex]
[tex] \\ \\ [/tex]
So:-
[tex] \\ [/tex]
[tex]: \implies\sf Area~of~rectangle= length \times width \\ \\ \\ : \implies\sf 90.3= 10.5 \times width \\ \\ \\: \implies\sf 90.3 \div 10.5=width \\ \\ \\: \implies\sf \dfrac{ 90.3}{10.5}=width \\ \\ \\: \implies\sf \dfrac{ 90 \cancel.3}{10 \cancel.5}=width \\ \\ \\: \implies\sf \dfrac{ 903}{105}=width \\ \\ \\: \implies\sf width = \dfrac{ 903}{105} \\ \\ \\: \implies \underline{\boxed{\sf width = 8.6}} \pink\bigstar[/tex]
[tex]\\\\\\[/tex]
Know More:
[tex]\begin{lgathered}\small\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf \small{Formulas\:of\:Areas:-}}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}\end{gathered}\end{lgathered}[/tex]