Using the Central Limit Theorem, it is found that the values of the population standard deviation [tex]\sigma[/tex] needed are given by:
a) [tex]\sigma = 32[/tex]
b) [tex]\sigma = 16[/tex]
c) [tex]\sigma = 4[/tex]
By the Central Limit Theorem, the sampling distribution of sample means of size n has standard error [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
In this problem, we have that n = 16.
Item a:
s = 8, hence:
[tex]s = \frac{\sigma}{\sqrt{n}}[/tex]
[tex]8 = \frac{\sigma}{\sqrt{16}}[/tex]
[tex]\sigma = 32[/tex]
Item b:
s = 4, hence:
[tex]s = \frac{\sigma}{\sqrt{n}}[/tex]
[tex]4 = \frac{\sigma}{\sqrt{16}}[/tex]
[tex]\sigma = 16[/tex]
Item c:
s = 1, hence:
[tex]s = \frac{\sigma}{\sqrt{n}}[/tex]
[tex]1 = \frac{\sigma}{\sqrt{16}}[/tex]
[tex]\sigma = 4[/tex]
More can be learned about the Central Limit Theorem at https://brainly.com/question/24663213