Respuesta :

Answer:

2 v 13, 2 Square root 13

Step-by-step explanation:

there's 2 right triangles

a)

10^2 = 6^ + a^2

100 - 36 = a^2

64 = a ^2

a = 8

--------------------------------------------

now we know the base of the right triangle = 8

and also the base of the left one = 4

8 + 4 = 12

--------------------------------------------

now find x

b)

x^2 = 6^2 + 4^2

x^2 = 36 + 16

x^2 = 52

x = (square root) 52

x = 2 v 13     <---- "v = square root"

Question :- Find the unknown side .

Instructions :- Simplify the answer if there is square root

Given :-

  1. Two triangles
  2. Total length of the base 12
  3. First triangle dimensions
  • 10 as it's hypotenuse
  • 6 as it's perpendicular

Answer:- X = ✓ 52 = 7.2

Explanation:-

Formula :-

hypotenuse² = perpendicular²+base²

Solution:-

First triangle:-

[tex] {h}^{2} = {p}^{2} + {b}^{2} \\ {10}^{2} = {6}^{2} + {b}^{2} \\ 100 = 36 + {b}^{2} \\ 100 - 36 = {b}^{2} \\ 64 = {b}^{2} \\ 8 = b[/tex]

Second triangle

  1. perpendicular = 6
  2. hypotenuse = X ( to Find )
  3. base = 12-b = 12-8= 4

[tex] {h}^{2} = {p}^{2} + {b}^{2} \\ {x}^{2} = {6}^{2} + {4}^{2} \\ {x}^{2} = 36 + 16 \\ {x}^{2} = 52 \\ x = \sqrt{52} = 7.2 \\ x = 7 \: \: approx[/tex]

Ver imagen DEVIL005