Find the point-slope equation for the line that passes through the points (5, 35) and (-6, -31). Use the first point in your equation..​

Respuesta :

Given ↓

  • 2 points that a line passes through

To Find ↓

  • The point-slope equation for the line

Calculations ↓

First of all, we need to find the slope. In order to find the slope, we'll use the following formula :

[tex]\boxed{\\\begin{minipage}{2cm}slope \\ $\displaystyle\frac{y2-y1}{x2-x1}$\end{minipage}}[/tex]

[tex]\boxed{\\\begin{minipage}{2cm}$\displaystyle\frac{-31-35}{-6-5}$ \\ \end{minipage}}[/tex]

[tex]\boxed{\\\begin{minipage}{2cm}$\displaystyle\frac{-77}{-11} \\ \end{minipage}}[/tex]

Which simplifies to :

[tex]\text{Slope = 7 }[/tex]

Now that we know the slope, finding the point-slope equation is a piece of cake.

Remember Point-Slope :

[tex]\text{y - y1 = m(x-x1)}[/tex]

We're told to use the first point (5, 35) in our equation, so we'll do just that.

[tex]\LARGE\text{y - 35=7(x-5)}[/tex]

[tex]\mathsf{equation\:above}[/tex]

hope helpful ~