Respuesta :
Answer:
5229 mm³
Step-by-step explanation:
Volume of square pyramid
[tex]\sf \boxed{Volume \ of \ the \ square \ pyramid = \dfrac{1}{3}*b^2*H}[/tex]
b = base length = 25 mm
H = height
We have to find 'H' using Pythagorean theorem,
slant height (hypotenuse) = 28 mm
leg₁ = base length ÷ 2 = 25÷2 = 12.5
leg₂ = H
H² + (12.5)² = 28²
H² = 784 - 156.25
= 627.75
[tex]\sf H = \sqrt{627.75}[/tex]
H = 25.01 mm
[tex]\sf \text{Volume of square pyramid =$\dfrac{1}{3}*25*25*25.1$ }[/tex]
= 5229 mm³
[tex]\sf \boxed{\text{Volume of square pyramid = \dfrac{1}{3}*25*25*28}}[/tex]
given:
base= 25 mm
height= 28 mm
to find:
the area of the square pyramid.
solution:
[tex]volume = {a}^{2} \frac{h}{3} [/tex]
[tex]v = {25}^{2} \times \frac{28}{3} [/tex]
[tex]v = 5833.33333[/tex]
[tex]v = 5833.3[/tex]