The y-intercept of linear function (f- g)(x) is (0,9)
The table of values is given as:
x -6 -4 -1 3 4
f(x) 15 11 5 -3 -5
g(x) -36 -26 -11 9 14
The equations of the functions is calculated using:
[tex]y = \frac{y_2 -y_1}{x_2-x_1} * (x -x_1) + y_1[/tex]
So, we have:
[tex]f(x) = \frac{11 -15}{-4 + 6} * (x + 6) + 15[/tex]
Evaluate
f(x) = -2x + 3
Also, we have:
[tex]g(x) = \frac{-26 + 36}{-4 + 6} * (x + 6) - 36[/tex]
Evaluate
g(x) = 5x - 6
Next, we calculate (f - g)(x) using:
(f - g)(x) = f(x) - g(x)
This gives
(f - g)(x) = -2x + 3 - 5x + 6
Substitute 0 for x
(f - g)(0) = -2(0) + 3 - 5(0) + 6
Evaluate
(f - g)(0) = 9
Hence, the y-intercept of (f- g)(x) is (0,9)
Read more about linear functions at:
https://brainly.com/question/24896196
#SPJ1