Which expression is equivalent to startfraction (4 p superscript negative 4 baseline q) superscript negative 2 baseline over 10 p q superscript negative 3 baseline endfraction? assume p not-equals 0, q not-equals 0.

Respuesta :

The given expression is equivalent to [tex]\frac{p^{7}q}{160}[/tex]

What are indices?

An index is a small number that tells us how many times a term has been multiplied by itself.

The plural of index is indices.

Below is an example of a term written in index form :[tex]4^{3}[/tex]

4 is the base and 3 is the index.

We can read this as ‘4 to the power 3’

Another way of expressing [tex]4^{3}[/tex] is

4 x 4 x 4 = 64

Indices can be positive or negative numbers.

Given expression can be written as [tex]\frac{({4p^{-4}q})^{-2}}{10pq^{-3}}[/tex]

Now to simplify the given fractional expression :[tex]\frac{({4p^{-4}q})^{-2}}{10pq^{-3}}[/tex]

=   [tex]\frac{4^{-2}p^{8}q^{-2}}{10pq^{-3}}[/tex]                    By using the property of exponents is given by:

                                    [tex](a^{m})^{n}=a^{m n}[/tex]

=[tex]\frac{p^{7}q}{10 .16}[/tex]                              By using the property of exponents given by

                                       [tex]a^{m}a^{n}=a^{m + n}[/tex]  and  [tex]a^{-m}= \frac{1}{a^{m}}[/tex]

= [tex]\frac{p^{7}q}{160}[/tex]

Learn about indices here :

https://brainly.com/question/27327380

#SPJ4