Respuesta :

Answer:

The second and third equations are correct.  

Step-by-step explanation:

Note that the equations are all the same, with the exception of the math operation (=,>,<,[tex]\leq[/tex], etc.).  Let's do one calculation and then decide which of the statements is true.

The components may be simplified by separating the numbers from the exponents and doing the calculations separately:

(2.06x10^-2)(1.88x10^-1)  becomes (2.06*1.88)*(10^-2 * 10^-1)

Left Side:

(2.06*1.88) = 3.91

(10^-2 * 10^-1) = 10^-3  [The exponents add when multiplying]

(2.06x10^-2)(1.88x10^-1) = 3.91x10^-3

Right side:

(7.69/2.3) = 3.343

(10^-2)/(10^-5) = 10^3  [The bottom exponent is subtracted from the top. ( -2 - (-5)) = 3   ]

(7.69x10^-2)/(2.3x10^-5) = 3.343x10^3

For all equations:

LEFT                    RIGHT

3.91x10^-3       3.343x10^3

We can now answer the question.  Is the left side (3.91x10^-3 )      

A.  <

B.  =>

C.  >, or

D.  =

to the right side (3.343x10^3)

We can drop the 10^-3 to make the comparison simpler, since it is the same on both sides.  Think of it as dividing both sides by 10^3.

                                             Correct?

A.    3.91   <   3.34                NO

B.     3.91 =>  3.34                YES  

C.    3.91  >    3.34, or          YES

D.    3.91  =    3.34                NO