Respuesta :

Answer:

x =  -1,  7,  3 + i,  3 - i.

Step-by-step explanation:

(x^2-6x+9)^2-15(x^2-6x+10)=1

(x^2 - 6x + 9)^2  - 15(x^2 - 6x + 9) - 15*1 = 1

(x^2 - 6x + 9)^2  - 15(x^2 - 6x + 9) - 16 = 0

Let Z = x^2 - 6x + 9, then we have:

Z^2 - 15Z - 16 = 0

(Z - 16)(Z + 1) = 0

Z = 16 or Z = -1

so  x^2 - 6x + 9 = -1 or x^2 - 6x + 9 = 16

x^2 - 6x + 9 = -1

---> x^2 - 6x + 10 = 0

Using the Quadratic Formula:

---> x = [6 +/- √((-6)^2 - 4* 1* 10) / 2

---> x = 6/2 +/- √-4/2

---> x = 3 + i , 3 - i.

x^2 - 6x + 9 = 16

---> x^2 - 6x - 7 = 0

---> (x - 7)(x + 1) = 0

---> x = 7, -1.