Respuesta :

The surface integral of the given surface [tex]z=\frac{2}{3}(x^\frac{3}{2}+y^\frac{3}{2})[/tex] in the intervals 0 ≤ x ≤ 4, 0 ≤ y ≤ 1 is 7.36615.

How to evaluate the surface integral?

To evaluate the surface integral, the formula applied is

[tex]S=\int\limits^b_a\int\limits^d_c {f(x,y)} \ dy\ dx[/tex]

⇒ S = [tex]\int\limits^b_a \int\limits^d_c {\sqrt{1+(\frac{dz}{dx})^2+(\frac{dz}{dy})^2 } } \, dy \, dx[/tex]

Where the differentiation is partial differentiation and f(x, y) = z.

Calculation:

The given function is

f(x, y) = [tex]z=\frac{2}{3}(x^\frac{3}{2}+y^\frac{3}{2})[/tex]

Then, applying the partial differentiation w.r.t x and y respectively,

dz/dx = [tex]\frac{2}{3}(\frac{3}{2})x^{1/2}[/tex] = [tex]x^{1/2}[/tex]

dz/dy = [tex]\frac{2}{3}(\frac{3}{2})y^{1/2}[/tex] = [tex]y^{1/2}[/tex]

Then,

we have surface integral  formula as

S = [tex]\int\limits^b_a \int\limits^d_c {\sqrt{1+(\frac{dz}{dx})^2+(\frac{dz}{dy})^2 } } \, dy \, dx[/tex]

On substituting,

⇒ S = [tex]\int\limits^4_0 {\int\limits^1_0 {\sqrt{1+(x^{1/2})^2+(y^{1/2})^2} \, dy } \, dx[/tex]

⇒ S = [tex]\int\limits^4_0 {\int\limits^1_0 {\sqrt{1+x+y} \, dy } \, dx[/tex]

On integrating w.r.t y

⇒ S = [tex]\int\limits^4_0 {\frac{2}{3}(1+x+y)^{3/2}} \,|_0^1 dx[/tex]

Applying limits,

⇒ S = [tex]\int\limits^4_0 {\frac{2}{3}[(1+x+1)^{3/2}-(1+x+0)^{3/2} } \, dx[/tex]

⇒ S = [tex]\frac{2}{3} \int\limits^4_0 {[(x+2)^{3/2}-(x+1)^{3/2}}] \, dx[/tex]

Again applying the integration w.r.t x

⇒ S = [tex]\frac{2}{3}[\frac{2}{5}(x+2)^{5/2}-\frac{2}{5}(x+1)^{5/2}]|_0^4[/tex]

Applying the limits and simplifying,

⇒ S = [tex]\frac{4}{15}[(4+2)^{5/2}-(4+1)^{5/2}-(0+2)^{5/2}+(0+1)^{5/2}][/tex]

⇒ S = [tex]\frac{4}{15}[1+36\sqrt{6}-25\sqrt{5}-4\sqrt{2}][/tex]

∴ S = 7.36615

Therefore, the surface integral of the given function is 7.36615.

Learn more about the surface integral here:

https://brainly.com/question/4718231

#SPJ1