Answer:
112 L
Explanation:
Since the pressure is being held constant, you can use the following variation of the Ideal Gas Law to find the new volume:
[tex]\frac{V_1}{T_1N_1}=\frac{V_2}{T_2N_2}[/tex]
In this equation, "V₁", "T₁", and "N₁" represent the initial volume, temperature, and moles. "V₂", "T₂", and "N₂" represent the final volume, temperature, and moles.
V₁ = 87.2 L V₂ = ? L
T₁ = 425 K T₂ = 273 K
N₁ = 2.5 moles N₂ = 2.5 + 2.5 = 5.0 moles
[tex]\frac{V_1}{T_1N_1}=\frac{V_2}{T_2N_2}[/tex] <----- Formula
[tex]\frac{87.2 L}{(425K)(2.5 moles)}=\frac{V_2}{(273 K)(5.0 moles)}[/tex] <----- Insert values
[tex]\frac{87.2 L}{1062.5}=\frac{V_2}{1365}[/tex] <----- Simplify denominators
[tex]0.08207=\frac{V_2}{1365}[/tex] <----- Simplify left side
[tex]112L={V_2}[/tex] <----- Multiply both sides by 1365